Gesammelte Abhandlungen. Band I. Herausgegeben von K. Chandrasekharan und H. Maaß.
2 Angebote vergleichen

Preise2019202020212022
Schnitt 84,16 96,99 97,66 99,99
Nachfrage
Bester Preis: 44,99 (vom 22.09.2019)
1
Siegel, Carl Ludwig

Gesammelte Abhandlungen. Band I. Herausgegeben von K. Chandrasekharan und H. Maaß. (1966)

Lieferung erfolgt aus/von: Irland ~DE HC

ISBN: 1268364207 bzw. 9781268364202, Band: 1, vermutlich in Deutsch, gebundenes Buch.

97,43 ($ 107,47)¹ + Versand: 10,21 ($ 11,26)¹ = 107,64 ($ 118,73)¹
unverbindlich
Lieferung aus: Irland, Versandkosten nach: DEU.
Von Händler/Antiquariat, Inanna Rare Books Ltd.
1966. Berlin/Heidelberg/New York, Springer-Verlag, 1966. Gr.-8°. 548 Seiten. Hardcover / Originaler Leinenband ohne Schutzumschlag. Sehr guter Zustand mit nur ganz geringen äusserlichen Gebrauchsspuren. Namensstempel des Vorbesitzers auf dem Vorsatzblatt. KEINE Anstreichungen. KEIN Mängelexemplar. Enthält u.A.: Über Riemanns Nachlaß zur analytischen Zahlentheorie / Über die analytische Theorie der quadratischen Formen I,II und III / The volume of the fundamental domain for some infinite groups / Additive Theorie der Zahlkörper I und II / Neuer Beweis des Satzes von Minkowski über lineare Formen / Bemerkungen zu einem Satz von Hamburger über die Funktionalgleichung der Riemannschen Zetafunktion / Über Nährungswerte algebraischer Zahlen / Über den Thueschen Satz etc. etc. Carl Ludwig Siegel (* 31. Dezember 1896 in Berlin; † 4. April 1981 in Göttingen) war ein deutscher Mathematiker; sein Spezialgebiet war die Zahlentheorie. Er gilt als einer der bedeutendsten Mathematiker des 20. Jahrhunderts. Siegel studierte ab 1915 in Berlin Astronomie, Physik und Mathematik, unter anderem bei Ferdinand Georg Frobenius und Max Planck. Unter dem Einfluss Frobenius' spezialisierte er sich auf Zahlentheorie. 1917 wurde er einberufen. Da er den Wehrdienst verweigerte, wurde er in eine psychiatrische Anstalt eingewiesen. Nach eigenen Worten überstand er die Zeit nur, da Edmund Landau, dessen Vater in der Nachbarschaft eine Klinik hatte, ihn unterstützte. Er setzte sein Studium 1919 in Göttingen fort, diesmal protegiert von Richard Courant, und promovierte 1920 unter Landau mit der schon in Berlin als Viertsemester gefundenen Arbeit über die Approximation irrationaler Zahlen, die Thues Resultat verschärft. Bereits 1922 wurde er Professor in Frankfurt als Nachfolger von Arthur Moritz Schönflies. Siegel, dem der Nationalsozialismus zutiefst zuwider war, schloss Freundschaft mit den jüdischen Dozenten Ernst Hellinger und Max Dehn und setzte sich für die beiden ein. Diese Haltung machte Siegels Berufung als Nachfolger auf den Lehrstuhl von Constantin Carathéodory in München unmöglich. In Frankfurt beteiligte er sich mit Dehn, Hellinger, Paul Epstein und anderen auch an einem Seminar zur Geschichte der Mathematik, das auf höchstem Niveau betrieben wurde (grundsätzlich wurden die Originale gelesen). Siegel hat diese Zeit später in einem Aufsatz vor dem Vergessen bewahrt. In den 1930er Jahren bemühte er sich vergeblich bei der nationalsozialistischen Regierung, seinen jüdischen Kollegen Landau, Dehn, Hellinger und Courant die Lehrstühle zu erhalten. 1938 kehrte Siegel nach Göttingen zurück, entschied sich aber 1940, nach Gastaufenthalten in Dänemark und Norwegen nicht mehr nach Deutschland zurückzukehren. Kurz vor der deutschen Besetzung Norwegens floh er mit einem Dampfer in die USA. Die Emigration wurde ihm durch die Tatsache erleichtert, dass er keine Familie hatte, auch wenn er mit der Mathematikerin Hel Braun eine enge Freundin in Göttingen zurückließ; er blieb Zeit seines Lebens unverheiratet. Siegel lehrte und arbeitete von 1940 bis 1951 am Institute for Advanced Study in Princeton, wo er schon 1935 war, und kehrte 1951 nach Göttingen zurück, wo er 1959 emeritiert wurde (danach hielt er aber noch einige Jahre Vorlesungen) und bis zu seinem Lebensende blieb. In seiner Dissertation 1920 verbesserte Siegel die Thue'sche Abschätzung zur Approximation algebraischer Zahlen durch rationale Zahlen erheblich, ein Ergebnis, das er schon als Student im 3. Semester gefunden hatte. Es wurde 1955 durch Klaus Friedrich Roth, der dafür die Fields-Medaille erhielt, nochmals (bestmöglich) verschärft (Satz von Thue-Siegel-Roth). Siegel wandte sein Ergebnis dann 1929 dafür an, sein berühmtestes Resultat zu erzielen, den Beweis, dass algebraische Gleichungen in ganzen Zahlen nur endlich viele Lösungen haben, sobald das Geschlecht g ? 1 ist. Quadratische Gleichungen (Geschlecht Null, entsprechend Sphäre) haben natürlich unendlich viele Lösungen, z. B. Pythagoräische Tripel. Der Siegels Satz entsprechende Satz für rationale Zahlen heißt Mordellvermutung bzw. nach Faltings´ Beweis „Satz von Faltings“. Siegel erweiterte die bis dahin sehr schwach ausgeprägte Theorie über transzendente Zahlen erheblich und entwickelte entsprechende Entscheidungskriterien dafür, wann eine Zahl transzendent, also nicht Lösung einer algebraischen Gleichung ist. Siegel führte neue Methoden ein, zuerst für den Beweis spezieller Werte der Lösungen von Differentialgleichungen 2. Ordnung, wie die Besselfunktionen. Gelfond und Schneider führten u. A. mit diesen Methoden später Transzendenzbeweise, die eines von Hilberts Problemen lösten. Ferner forschte er zur Geometrie der Zahlen (im Sinne Minkowskis), der Theorie der Zetafunktion (er fand neue Ergebnisse Bernhard Riemanns in dessen Nachlass und erweiterte diese), bewies die Funktionalgleichung für die Dedekind-Zetafunktion in algebraischen Zahlkörpern, arbeitete zu quadratischen Formen und fand weitere Regeln zur Abschätzung von Lösungen diophantischer Gleichungen. In der additiven Zahlentheorie untersuchte er Probleme vom Waring-Typ (maximale Anzahl k-ter Potenzen, die nötig sind zur Darstellung beliebiger natürlicher Zahlen als Summe dieser k-ten Potenzen) mit analytischen Methoden. In seiner analytischen Theorie quadratischer Formen in mehreren Variablen bewies er seine berühmte analytische Klassenzahlformel für die Anzahl der Darstellungen einer Form durch eine andere: Auf deren einer Seite steht eine Art Thetafunktion, mit der Spur der Matrizen im Exponenten und Summation über Klassen-Repräsentanten; auf der anderen Seite der Gleichung steht eine Eisenstein-Reihe, also eine Modulform, wobei wieder über Klassenrepräsentanten summiert wird. Diese analytischen Gebilde liefern gleichzeitig zwei Arten, die Siegelschen Modulfunktionen einzuführen, damals um 1935 aufsehenerregend, da über Funktionentheorie in mehreren Variablen wenig bekannt war. Siegel fand auch mit Richard Brauer ein Resultat über das asymptotische Verhalten der Klassenzahlen algebraischer Zahlkörper. Zusammen mit Hans Heilbronn bewies er, dass die Klassenzahlen imaginär quadratischer Zahlkörper (definiert durch Adjunktion der Wurzel von (-n) zu den rationalen Zahlen) für große n divergieren, was schon Carl Friedrich Gauß vermutete. Er rettete auch zusammen mit Harold Stark und Max Deuring den Beweis des Privatgelehrten Kurt Heegner (1952) für das „Klassenzahl 1“-Problem imaginär quadratischer Zahlkörper von Gauß (also dass es keine weiteren solchen Zahlkörper außer den damals schon bekannten neun gab), für den er Eigenschaften von Modulfunktionen benutzte. Anlass war der neue Beweis von Harold Stark in den 1960er Jahren, der zur erneuten Betrachtung des schwer verständlichen, seinerzeit bezweifelten Beweises von Heegner führte. (Wikipedia).
2
Siegel, Carl Ludwig

Gesammelte Abhandlungen. Band I. Herausgegeben von K. Chandrasekharan und H. Maaß. (1966)

Lieferung erfolgt aus/von: Irland ~DE HC

ISBN: 1268364207 bzw. 9781268364202, Band: 1, vermutlich in Deutsch, gebundenes Buch.

97,44 ($ 101,09)¹ + Versand: 19,49 ($ 20,22)¹ = 116,93 ($ 121,31)¹
unverbindlich
Lieferung aus: Irland, Versandkosten nach: DEU.
Von Händler/Antiquariat, Inanna Rare Books Ltd.
1966. Berlin/Heidelberg/New York, Springer-Verlag, 1966. Gr.-8°. 548 Seiten. Hardcover / Originaler Leinenband ohne Schutzumschlag. Sehr guter Zustand mit nur ganz geringen äusserlichen Gebrauchsspuren. Namensstempel des Vorbesitzers auf dem Vorsatzblatt. KEINE Anstreichungen. KEIN Mängelexemplar. Enthält u.A.: Über Riemanns Nachlaß zur analytischen Zahlentheorie / Über die analytische Theorie der quadratischen Formen I,II und III / The volume of the fundamental domain for some infinite groups / Additive Theorie der Zahlkörper I und II / Neuer Beweis des Satzes von Minkowski über lineare Formen / Bemerkungen zu einem Satz von Hamburger über die Funktionalgleichung der Riemannschen Zetafunktion / Über Nährungswerte algebraischer Zahlen / Über den Thueschen Satz etc. etc. Carl Ludwig Siegel (* 31. Dezember 1896 in Berlin; † 4. April 1981 in Göttingen) war ein deutscher Mathematiker; sein Spezialgebiet war die Zahlentheorie. Er gilt als einer der bedeutendsten Mathematiker des 20. Jahrhunderts. Siegel studierte ab 1915 in Berlin Astronomie, Physik und Mathematik, unter anderem bei Ferdinand Georg Frobenius und Max Planck. Unter dem Einfluss Frobenius' spezialisierte er sich auf Zahlentheorie. 1917 wurde er einberufen. Da er den Wehrdienst verweigerte, wurde er in eine psychiatrische Anstalt eingewiesen. Nach eigenen Worten überstand er die Zeit nur, da Edmund Landau, dessen Vater in der Nachbarschaft eine Klinik hatte, ihn unterstützte. Er setzte sein Studium 1919 in Göttingen fort, diesmal protegiert von Richard Courant, und promovierte 1920 unter Landau mit der schon in Berlin als Viertsemester gefundenen Arbeit über die Approximation irrationaler Zahlen, die Thues Resultat verschärft. Bereits 1922 wurde er Professor in Frankfurt als Nachfolger von Arthur Moritz Schönflies. Siegel, dem der Nationalsozialismus zutiefst zuwider war, schloss Freundschaft mit den jüdischen Dozenten Ernst Hellinger und Max Dehn und setzte sich für die beiden ein. Diese Haltung machte Siegels Berufung als Nachfolger auf den Lehrstuhl von Constantin Carathéodory in München unmöglich. In Frankfurt beteiligte er sich mit Dehn, Hellinger, Paul Epstein und anderen auch an einem Seminar zur Geschichte der Mathematik, das auf höchstem Niveau betrieben wurde (grundsätzlich wurden die Originale gelesen). Siegel hat diese Zeit später in einem Aufsatz vor dem Vergessen bewahrt. In den 1930er Jahren bemühte er sich vergeblich bei der nationalsozialistischen Regierung, seinen jüdischen Kollegen Landau, Dehn, Hellinger und Courant die Lehrstühle zu erhalten. 1938 kehrte Siegel nach Göttingen zurück, entschied sich aber 1940, nach Gastaufenthalten in Dänemark und Norwegen nicht mehr nach Deutschland zurückzukehren. Kurz vor der deutschen Besetzung Norwegens floh er mit einem Dampfer in die USA. Die Emigration wurde ihm durch die Tatsache erleichtert, dass er keine Familie hatte, auch wenn er mit der Mathematikerin Hel Braun eine enge Freundin in Göttingen zurückließ; er blieb Zeit seines Lebens unverheiratet. Siegel lehrte und arbeitete von 1940 bis 1951 am Institute for Advanced Study in Princeton, wo er schon 1935 war, und kehrte 1951 nach Göttingen zurück, wo er 1959 emeritiert wurde (danach hielt er aber noch einige Jahre Vorlesungen) und bis zu seinem Lebensende blieb. In seiner Dissertation 1920 verbesserte Siegel die Thue'sche Abschätzung zur Approximation algebraischer Zahlen durch rationale Zahlen erheblich, ein Ergebnis, das er schon als Student im 3. Semester gefunden hatte. Es wurde 1955 durch Klaus Friedrich Roth, der dafür die Fields-Medaille erhielt, nochmals (bestmöglich) verschärft (Satz von Thue-Siegel-Roth). Siegel wandte sein Ergebnis dann 1929 dafür an, sein berühmtestes Resultat zu erzielen, den Beweis, dass algebraische Gleichungen in ganzen Zahlen nur endlich viele Lösungen haben, sobald das Geschlecht g ? 1 ist. Quadratische Gleichungen (Geschlecht Null, entsprechend Sphäre) haben natürlich unendlich viele Lösungen, z. B. Pythagoräische Tripel. Der Siegels Satz entsprechende Satz für rationale Zahlen heißt Mordellvermutung bzw. nach Faltings´ Beweis „Satz von Faltings“. Siegel erweiterte die bis dahin sehr schwach ausgeprägte Theorie über transzendente Zahlen erheblich und entwickelte entsprechende Entscheidungskriterien dafür, wann eine Zahl transzendent, also nicht Lösung einer algebraischen Gleichung ist. Siegel führte neue Methoden ein, zuerst für den Beweis spezieller Werte der Lösungen von Differentialgleichungen 2. Ordnung, wie die Besselfunktionen. Gelfond und Schneider führten u. A. mit diesen Methoden später Transzendenzbeweise, die eines von Hilberts Problemen lösten. Ferner forschte er zur Geometrie der Zahlen (im Sinne Minkowskis), der Theorie der Zetafunktion (er fand neue Ergebnisse Bernhard Riemanns in dessen Nachlass und erweiterte diese), bewies die Funktionalgleichung für die Dedekind-Zetafunktion in algebraischen Zahlkörpern, arbeitete zu quadratischen Formen und fand weitere Regeln zur Abschätzung von Lösungen diophantischer Gleichungen. In der additiven Zahlentheorie untersuchte er Probleme vom Waring-Typ (maximale Anzahl k-ter Potenzen, die nötig sind zur Darstellung beliebiger natürlicher Zahlen als Summe dieser k-ten Potenzen) mit analytischen Methoden. In seiner analytischen Theorie quadratischer Formen in mehreren Variablen bewies er seine berühmte analytische Klassenzahlformel für die Anzahl der Darstellungen einer Form durch eine andere: Auf deren einer Seite steht eine Art Thetafunktion, mit der Spur der Matrizen im Exponenten und Summation über Klassen-Repräsentanten; auf der anderen Seite der Gleichung steht eine Eisenstein-Reihe, also eine Modulform, wobei wieder über Klassenrepräsentanten summiert wird. Diese analytischen Gebilde liefern gleichzeitig zwei Arten, die Siegelschen Modulfunktionen einzuführen, damals um 1935 aufsehenerregend, da über Funktionentheorie in mehreren Variablen wenig bekannt war. Siegel fand auch mit Richard Brauer ein Resultat über das asymptotische Verhalten der Klassenzahlen algebraischer Zahlkörper. Zusammen mit Hans Heilbronn bewies er, dass die Klassenzahlen imaginär quadratischer Zahlkörper (definiert durch Adjunktion der Wurzel von (-n) zu den rationalen Zahlen) für große n divergieren, was schon Carl Friedrich Gauß vermutete. Er rettete auch zusammen mit Harold Stark und Max Deuring den Beweis des Privatgelehrten Kurt Heegner (1952) für das „Klassenzahl 1“-Problem imaginär quadratischer Zahlkörper von Gauß (also dass es keine weiteren solchen Zahlkörper außer den damals schon bekannten neun gab), für den er Eigenschaften von Modulfunktionen benutzte. Anlass war der neue Beweis von Harold Stark in den 1960er Jahren, der zur erneuten Betrachtung des schwer verständlichen, seinerzeit bezweifelten Beweises von Heegner führte. (Wikipedia).
Lade…